一种宽光谱响应的双结单光子雪崩二极管

刘丹璐

固体电子学研究与进展 ›› 2023, Vol. 43 ›› Issue (5) : 424-429.

PDF(767 KB)
PDF(767 KB)
固体电子学研究与进展 ›› 2023, Vol. 43 ›› Issue (5) : 424-429.
光电子学

一种宽光谱响应的双结单光子雪崩二极管

  • 刘丹璐
作者信息 +

Research of a Dual‑junction Single Photon Avalanche Diode with Wide Spectrum Response

  • LIU Danlu
Author information +
文章历史 +

摘要

基于180 nm BCD工艺提出了一种新型双结雪崩区的单光子雪崩二极管 (SPAD) 探测器,采用N阱/高压P阱/N埋层结构形成了两个垂直堆叠的PN结,高压P阱和N埋层交界面形成较深的主雪崩区,增强对近红外短波光子的探测概率;同时,N阱/高压P阱之间形成浅的次雪崩区,实现对蓝绿光的高效探测,两结同时工作能够有效扩展器件的光谱响应范围。TCAD仿真结果表明,与传统的P阱/深N阱结构相比,双结SPAD器件在300~940 nm的宽光谱范围内有更高的光子探测概率,在800 nm近红外短波段探测概率达到了20.6%。在3 V过偏压下,暗计数率为0.8 kHz,后脉冲概率为3.2%。

Abstract

A novel dual-junction single-photon avalanche diode (SPAD) detector structure was proposed in 180 nm BCD technology. The N-well/high-voltage P-well/N buried layer structure was used to form two vertically stacked PN junctions. The high-voltage P-well and N buried layer formed a deeper primary avalanche zone, which enhanced the detection probability of the near-infrared photons. Meanwhile, a shallow secondary avalanche region was formed by the N-well/high-voltage P-well, provided high detection efficiency for the blue and green light. Thus, the spectral response range of the device could be improved when the two junctions work simultaneously. The TCAD simulation results show that compared with the traditional P-well/deep N-well structure, the dual-junction SPAD can effectively improve the photon detection probability in wide spectral range of 300-940 nm, even reaching 20.6% at 800 nm. Furthermore, at 3 V excess bias, a low dark count rate of 0.8 kHz and afterpulsing probability of 3.2% are obtained.

关键词

单光子雪崩二极管(SPAD) / 双结雪崩区 / 光子探测概率(PDP) / 暗计数率(DCR) / 后脉冲概率(AP)

Key words

single?photon avalanche diode(SPAD) / dual-junction avalanche region / photon detection probability(PDP) / dark count rate(DCR) / afterpulsing probability(AP)

引用本文

导出引用
刘丹璐. 一种宽光谱响应的双结单光子雪崩二极管[J]. 固体电子学研究与进展, 2023, 43(5): 424-429
LIU Danlu. Research of a Dual‑junction Single Photon Avalanche Diode with Wide Spectrum Response[J]. RESEARCH & PROGRESS OF SOLID STATE ELECTRONICS, 2023, 43(5): 424-429
中图分类号: TN312.7   

参考文献

[1] ZarghamiM, GaspariniL, ParmesanL, et al. A 32 × 32-pixel CMOS imager for quantum optics with per-SPAD TDC, 19.48% fill-factor in a 44.64 μm pitch reaching 1 MHz observation rate[J]. IEEE Journal of Solid-state Circuits, 2020, 55(10): 2819-2830.
[2] 王巍,王广,王伊昌,等. 一种低暗计数率CMOS单光子雪崩二极管[J]. 半导体光电, 2019, 40(2): 166-170.
[3] HuJ, LiuB, MaR, et al. A 32 × 32-pixel flash LiDAR sensor with noise filtering for high-background noise applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(2): 645-656.
[4] 马治强,徐跃,朱思慧,等. 用于单光子TOF测量的时间-幅度变换器[J]. 微电子学, 2021, 51(4): 546-551.
[5] SchwilleP, HauptsU, MaitiS, et al. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one-and two-photon excitation[J]. Biophysical Journal, 1999, 77(4): 2251-2265.
[6] RichardsonJ A, WebsterE A G, GrantL A, et al. Scaleable single-photon avalanche diode structures in nanometer CMOS technology[J]. IEEE Transactions on Electron Devices, 2011, 58(7): 2028-2035.
[7] ShinD, ParkB, ChaeY, et al. The effect of a deep virtual guard ring on the device characteristics of silicon single photon avalanche diodes[J]. IEEE Transactions on Electron Devices, 2019, 66(7): 2986-2991.
[8] LeeM J, SunP, PandraudG, et al. First near-ultraviolet- and blue-enhanced backside-illuminated single-photon avalanche diode based on standard SOI CMOS technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(5): 3800206-1-7.
[9] 韩冬,孙飞阳,鲁继远,等. 采用多晶硅场板降低单光子雪崩二极管探测器暗计数[J]. 物理学报, 2020, 69(14): 269-276.
[10] HurkxG A M, De GraaffH C, KloostermanW J, et al. A new analytical diode model including tunneling and avalanche breakdown[J]. IEEE Transactions on Electron Devices, 1992, 39(9): 2090-2098.
[11] HurkxG A M, KlaassenD B M, KnuversM P G. A new recombination model for device simulation including tunneling[J]. IEEE Transactions on Electron Devices, 1992, 39(2): 331-338.
[12] 孙飞阳. 基于SPAD的光子飞行时间探测器像素单元研究与设计[D]. 南京: 南京邮电大学, 2020.
[13] LacaitaA, FranceseP A, ZappaF, et al. Single-photon detection beyond 1 μm: Performance of commercially available germanium photodiodes[J]. Applied Optics, 1994, 33(30): 6902-6918.
[14] BoseS, OuhH, SenguptaS, et al. Parametric study of p-n junctions and structures for CMOS-integrated single-photon avalanche diodes[J]. IEEE Sensors Journal, 2018, 18(13): 5291-5299.
[15] RichardsonJ A, GrantL A, HendersonR K. Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology[J]. IEEE Photonics Technology Letters, 2009, 21(14): 1020-1022.

基金

国家自然科学基金面上项目(62171233,61571235);江苏省农业科技自主创新基金项目(CX(21)3062);江苏省研究生科研与实践创新计划项目(KYCX21_0714)
PDF(767 KB)

19

Accesses

0

Citation

Detail

段落导航
相关文章

/