对不同偏置下碳化硅VDMOS在总剂量辐射环境中的动态和静态特性进行了研究。比较了三种偏置状态下60Coγ射线辐照对于SiC VDMOS器件静态参数(阈值电压)和动态参数(开关响应)的影响。实验结果表明,在经历一定时间的 60Coγ射线辐照过后,器件的各项静态参数发生了不同程度的退化,同时器件的开启延迟略微缩短,关断延迟骤增,总开关损耗增大。γ射线辐照导致器件静态特性退化的同时其动态特性也在改变,但两者退化规律具有一定的差异性。
Abstract
An experimental study of the dynamic and static characteristics of SiC VDMOS under different biases in a total ionizing dose radiation environment was presented in this paper. The effects of 60Co γ-ray irradiation on the static parameters (threshold voltage) and dynamic parameters (switching response) of SiC VDMOS with three bias states were compared. The experimental results show that the static parameters of the device degrade to different degrees after a certain time of 60Co γ-ray irradiation. At the same time, the turn-on delay time is shortened slightly, the turn-off delay time increases sharply, and the total switching loss increases. γ-ray irradiation degrades the static properties of the device and changes its dynamic properties at the same time, but there is a certain difference between them.
关键词
碳化硅 /
总剂量效应 /
静态参数 /
动态特性
{{custom_keyword}} /
Key words
silicon carbide /
total ionizing dose /
static parameters /
dynamic characteristics
{{custom_keyword}} /
中图分类号:
O474
TN386.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] She X, Huang A Q, Lucia O, et al.Review of silicon carbide power devices and their applications[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 8193-8205.
[2] Van, Wyk J D. On a future for power electronics[J]. Emerging and Selected Topics in Power Electronics, 2013, 1(2):59-72.
[3] Whitaker B, Barkley A, Cole Z, et al.A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices[J]. IEEE Transactions on Power Electronics, 2014, 29(5):2606-2617.
[4] Chi Z, Srdic S, Lukic S, et al.A SiC-based 100 kW high-power-density (34 kW/L) electric vehicle traction inverter[C]. IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, 2018:3880-3885.
[5] Akturk A, Mcgarrity J M, Potbhare S, et al.Radiation effects in commercial 1 200 V 24 A silicon carbide power MOSFETs[J]. IEEE Transactions on Nuclear Science, 2013, 59(6):3258-3264.
[6] Murata K, Mitomo S, Matsuda T, et al. Impacts of gate bias and its variation on gamma-ray irradiation resistance of SiC MOSFETs[J]. Physica Status Solidi, 2017, 214(4):1600446.1-1600446.7.
[7] Schwank J R, Shaneyfelt M R, Fleetwood D M, et al.Radiation effects in MOS oxides[J]. IEEE Trans Nucl Sci, 2008, 55(4):1833-1853.
[8] Hazdra P, Popelka S. Radiation resistance of wide-bandgap semiconductor power transistors[J]. Physica Status Solidi, 2017, 214(4):1600447.1-1600447.8.
[9] Liang X, Cui J, Zheng Q, et al.Study of the influence of gamma irradiation on long-term reliability of SiC MOSFET[J]. Radiation Effects and Defects in Solids, 2020,175(5):559-566.
[10] Hughes R C.Hole mobility and transport in thin SiO2 films[J]. Applied Physics Letters, 1975, 26(8):436-438.
[11] Lichtenwalner D J, Hull B, Brunt E V, et al. Reliability studies of SiC vertical power MOSFETs[C]. IEEE International Reliability Physics Symposium (IRPS), IEEE, 2018:2B.2-1-6.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
*国家自然科学基金面上项目(11975305)
{{custom_fund}}