针对电动汽车、光伏、储能等战略性新兴产业对高可靠高效率碳化硅功率MOSFET器件的需求,开展了650 V碳化硅外延结构、芯片JFET区尺寸和掺杂等关键技术研究,研制出比导通电阻2.3 mΩ·cm2的650 V、200 A碳化硅MOSFET。器件在漏极电压900 V时,漏源漏电流小于1 μA;在环境温度150 ℃、栅极偏置电压22 V的应力条件下,经过1 000 h的高温栅偏可靠性试验,阈值电压正向漂移量小于0.3 V,显示出良好的稳定性。
Abstract
In view of the demand of strategic emerging industries such as electric vehicles, photovoltaic, and energy storage etc. for high reliability and high efficiency silicon carbide power MOSFET device, the research on key technology of silicon carbide epitaxial structure, chip JFET dimension and its doping profile had been carried out. A 650 V,200 A SiC MOSFET with specific on-resistance 2.3 mΩ·cm2 had been developed. When the drain voltage is 900 V, the drain-source leakage current is less than 1 μA. Under the stress condition of 150 ℃ ambient temperature and 22 V gate bias voltage, after 1 000 hours high temperature gate-bias reliability test, the forward drift of threshold voltage is less than 0.3 V, which shows good stability.
关键词
碳化硅 /
功率MOSFET /
650 V /
比导通电阻 /
可靠性
{{custom_keyword}} /
Key words
silicon carbide /
power metal-oxide-semiconductor field effect transistor /
650 V /
specific on-resistance /
reliability
{{custom_keyword}} /
中图分类号:
TN325.3
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Gajewski Donald A,Sei Hyung Ryu,Das Mrinal,et al.Reliability Performance of 1 200 V and 1 700 V 4H-SiC DMOSFETs for next generation power conversion applications[J].Materials Science Forum,2014,778-780:967-970.
[2] Agarwal A,Han K,Baliga B J.Impact of cell topology on characteristics of 600 V 4H-SiC planar MOSFETs[J].IEEE Electron Device Letters,2019,40(5):773-776.
[3] Zhou W,Zhong X,Sheng K.High temperature stability and the performance degradation of SiC MOSFETs[J].IEEE Trans Power Electron,2014,29(5):2329-2337.
[4] Palmour J W,Cheng L,Pala V,et al.Silicon carbide power MOSFETs:Breakthrough performance from 900 V up to 15 kV[C].2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's(ISPSD),2014:79-82.
[5] HullBrett A, Sei Hyung Ryu, Jon ZhangQ, et al. 1 700 V,20 A 4H-SiC DMOSFETs optimized for high temperature operation[J].Materials Science Forum,2011,679-680:633-636.
[6] Chowdhury S,Stum Z,Li ZD,et al. Comparison of 600 V Si,SiC and GaN power devices[J].Materials Science Forum,2014,778-780:971-974.
[7] Agarwal A,Han K,Baliga B J.Impact of channel length on characteristics of 600 V 4H-SiC inversion-channel planar MOSFETs[C].ESSDERC 2019-49th European Solid-state Device Research Conference (ESSDERC),2019:78-81.
[8] Agarwal A,Han K,Baliga B J.600 V 4H-SiC MOSFETs fabricated in commercial foundry with reduced gate oxide thickness of 27 nm to achieve IGBT-compatible gate drive of 15 V[J].IEEE Electron Device Letters,2019,40(11):1792-1795.
[9] Agarwal A,Kanale A,Baliga B J.Advanced 650 V SiC power MOSFETs with 10 V gate drive compatible with Si superjunction devices[J].IEEE Transactions on Power Electronics,2021,36(3):3335-3345.
[10] Kim D,Yun N,Sung W.Advancing static performance and ruggedness of 600 V SiC MOSFETs:Experimental analysis and simulation study[C].2021 IEEE International Reliability Physics Symposium(IRPS),2021:1-4.
[11] Agarwal A K,Seshadri S.Temperature dependence of fowler-nordheim current in 6H- and 4H-SiC MOS capacitors[J].IEEE Electron Device Letters,1997,18(12):592-594.
[12] 吴维丽,刘奥,郭锐.SiC MOSFET阈值电压漂移评测方法研究[J].固体电子学研究与进展,2021,41(4):313-318.
[13] Asllani B,Castellazzi A,Salvado O A,et al.VTH-hysteresis and interface states characterization in SiC power MOSFETs with planar and trench gate[C].2019 IEEE International Reliability Physics Symposium(IRPS),2019:1-6.
[14] Hull B,Allen S,Zhang Q,et al.Reliability and stability of SiC power MOSFETs and next-generation SiC MOSFETs[J].Materials Science Forum,2004,457-460:1385-1388.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
*国家重点研发计划项目(2020YFF0218500); 国家自然科学基金重点项目(12035019)
{{custom_fund}}