Research Progress on Carbon-based Radio Frequency Electronic Devices
PAN Zipeng, DING Li
Author information+
Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing, 100871, CHN
Carbon is the element exhibiting very high content in nature, and its numerous allotropes have significantly contributed to the ongoing advancement of society and technology. Especially in the semiconductor field, diamond, graphene and carbon nanotubes, with their ultra-high carrier mobility and unique energy band structure, have great prospects for applications in high frequency, high power and even power electronics. This paper reviews the research progress of carbon-based materials (diamond, graphene and carbon nanotubes) in radio frequency (RF) electronic devices, including material preparation, characterization, RF electronic device processes and recent achievements. Finally, the current challenges of carbon-based materials in RF applications are discussed,along with the prospects for future development of carbon-based RF devices.
PAN Zipeng, DING Li.
Research Progress on Carbon-based Radio Frequency Electronic Devices[J]. RESEARCH & PROGRESS OF SOLID STATE ELECTRONICS, 2024, 44(6): 469-486 https://doi.org/10.12450/j.gtdzx.202406001
[1] Dang S P , Amin O , Shihada B , et al . What should 6G be? [J]. Nature Electronics , 2020 , 3 : 20 - 29 . [2] Poncé S , Li W B , Reichardt S , et al . First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials [J]. Reports on Progress in Physics , 2020 , 83 ( 3 ): 036501 . [3] Leuther A , Koch S , Tessmann A , et al . 20 nm metamorphic HEMT with 660 GHz f T [C]. IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials . Berlin : IEEE , 2011 : 1 - 4 . [4] Mei X , Yoshida W , Lange M , et al . First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process [J]. IEEE Electron Device Letters , 2015 , 36 ( 4 ): 327 - 329 . [5] 王淑华 . THz InP HEMT和HBT技术的最新研究进展 [J]. 微纳电子技术 , 2018 , 55 ( 6 ): 381 - 387, 421 . [6] Leong K M K H , Mei X B , Yoshida W , et al . A 0.85 THz low noise amplifier using InP HEMT transistors [J]. IEEE Microwave & Wireless Components Letters , 2015 , 25 ( 6 ): 397 - 399 . [7] Kim J Y , Song H J , Ajito K , et al . InP HBT voltage controlled oscillator for 300-GHz-band wireless communications [C]. 2012 International SoC Design Conference (ISOCC) . Jeju, Korea : IEEE , 2013 : 262 - 265 . [8] Ahi K . Review of GaN-based devices for terahertz operation [J]. Optical Engineering , 2017 , 56 ( 9 ): 1 . [9] Ma C T , Gu Z H . Review on driving circuits for wide-bandgap semiconductor switching devices for mid to- high-power applications [J]. Micromachines , 2021 , 12 ( 1 ): 65 . [10] Roccaforte F , Fiorenza P , Greco G , et al . Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices [J]. Microelectronic Engineering , 2018 , 187-188 : 66 - 67 . [11] Franklin A D , Koswatta S O , Farmer D B , et al . Carbon nanotube complementary wrap-gate transistors [J]. Nano Letters , 2013 , 13 ( 6 ): 2490 - 2495 . [12] Hills G , Lau C , Wright A , et al . Modern microprocessor built from complementary carbon nanotube transistors [J]. Nature , 2019 , 572 ( 7771 ): 595 - 602 . [13] Cao Q . Carbon nanotube transistor technology for more-Moore scaling [J]. Nano Research , 2021 , 14 : 3051 - 3069 . [14] Saito R , Dresselhaus G , Dresselhaus M S . Physical Properties of Carbon Nanotubes [M]. London : World Scientific , 1998 : 272 . [15] Liang Q , Yan C S , Meng Y , et al . Recent advances in high-growth rate single-crystal CVD diamond [J]. Diamond and Related Materials , 2009 , 18 : 698 - 703 . [16] Tsao J Y , Chowdhury S , Hollis M A , et al . Ultrawide-bandgap semiconductors: research opportunities and challenges [J]. Advanced Electronic Materials , 2018 , 4 : 1600501 . [17] Zhang F Z , Yang K , Liu G J , et al . Recent advances on graphene: synthesis, properties and applications [J]. Composites Part A: Applied Science and Manufacturing , 2022 , 160 : 107051 . [18] Wu Y , Jenkins K A , Valdes-Garcia A , et al . State-of-the-art graphene high-frequency electronics [J]. Nano Letters , 2012 , 12 ( 6 ): 3062 - 3067 . [19] Cheng X H , Pan Z P , Fan C W , et al . Aligned carbon nanotube-based electronics on glass wafer [J]. Science Advances , 2024 , 10 ( 12 ): 1636 . [20] Donato N , Rouger N , Pernot J , et al . Diamond power devices: state of the art, modelling, figures of merit and future perspective [J]. Journal of Physics D: Applied Physics , 2020 , 53 ( 9 ): 093001 . [21] Shikata S . Single crystal diamond wafers for high power electronics [J]. Diamond and Related Materials , 2016 , 65 : 168 - 175 . [22] LI H D , Shen Y , Wen Y , et al . Band calculation and spectral analysis of diamond crystal [J]. Chinese Journal of Quantum Electronics , 2023 , 40 ( 6 ): 899 - 916 . [23] Kidalov S V , Shakhov F M . Thermal conductivity of diamond composites [J]. Materials , 2009 , 2 ( 4 ): 2467 - 2495 . [24] Soman R , Malakoutian M , Shankar B , et al . Novel all-around diamond integration with GaN HEMTs demonstrating highly efficient device cooling [C]. 2022 International Electron Devices Meeting (IEDM) . San Francisco : IEEE , 2022 : 30.8. 1 - 30 .8.4. [25] Isberg J , Hammersberg J , Johansson E , et al . High carrier mobility in single-crystal plasma-deposited diamond [J]. Science , 297 ( 5587 ): 1670 - 1672 . [26] Traoré A , Koizumi S , Pernot J , et al . Effect of n- and p-type doping concentrations and compensation on the electrical properties of semiconducting diamond [J]. Physica Status Solidi , 2016 , 213 ( 8 ): 2036 - 2043 . [27] Burns R C , Chumakov A I , Connell S H , et al . HPHT growth and X-ray characterization of high-quality type IIa diamond [J]. Journal of Physics: Condensed Matter , 2009 , 21 ( 36 ): 364224 . [28] Chae K W , Baik Y J , Park J K , et al . The 8-inch free-standing CVD diamond wafer fabricated by DC-PACVD [J]. Diamond and Related Materials , 2010 , 19 ( 10 ): 1168 - 1171 . [29] Schreck M , Roll H , Stritzker B . Diamond/Ir/SrTiO 3 : a material combination for improved heteroepitaxial diamond films [J]. Applied Physics Letters , 1999 , 74 ( 5 ): 650 - 652 . [30] Kato H , Ogura M , Makino T , et al . N-type control of single-crystal diamond films by ultra-lightly phosphorus doping [J]. Applied Physics Letters , 2016 , 109 ( 14 ): 142102 . [31] Butler J E , Geis M W , Krohn K E , et al . Exceptionally high voltage Schottky diamond diodes and low boron doping [J]. Semiconductor Science & Technology , 2003 , 18 ( 3 ): S67 . [32] Gabrysch M , Majdi S , Hallén A , et al . Compensation in boron‐doped CVD diamond [J]. Physica Status Solidi , 2008 , 205 ( 9 ): 2190 - 2194 . [33] Grotjohn T A , Tran D T , Yaran M K , et al . Heavy phosphorus doping by epitaxial growth on the (111) diamond surface [J]. Diamond & Related Materials , 2014 , 44 : 129 - 133 . [34] Hoshino Y , Kato H , Makino T , et al . Electrical properties of lateral p-n junction diodes fabricated by selective growth of n + diamond [J]. Physica Status Solidi , 2012 , 209 ( 9 ): 1761 - 1764 . [35] Geis M W , Wade T C , Wuorio C H , et al . Progress toward diamond power field-effect transistors [J]. Physica Status Solidi , 2018 , 215 ( 22 ): 1800681 . [36] Russell S , Sharabi S , Tallaire A , et al . RF operation of hydrogen-terminated diamond field effect transistors: a comparative study [J]. IEEE Transactions on Electron Devices , 2015 , 62 ( 3 ): 751 - 756 . [37] 马孟宇 , 蔚翠 , 何泽召 , 等 . 氢终端金刚石薄膜生长及其表面结构 [J]. 物理学报 , 2024 , 73 ( 8 ): 088101 . [38] Zhou C J , Wang J , Guo J C , et al . Radio frequency performance of hydrogenated diamond MOSFETs with alumina [J]. Applied Physics Letters , 2019 , 114 ( 6 ): 063501 . [39] Wang J J , He Z Z , Yu C , et al . Comparison of field-effect transistors on polycrystalline and single-crystal diamonds [J]. Diamond & Related Materials , 2016 , 70 : 114 - 117 . [40] Yuan X L , Zheng Y T , Zhu X H , et al . Recent progress in diamond-based MOSFETs [J]. 矿物冶金与材料学报(英文版) , 2019 , 26 ( 10 ): 1195 - 1205 . [41] Hiraiwa A , Daicho A , Kurihara S , et al . Refractory two-dimensional hole gas on hydrogenated diamond surface [J]. Journal of Applied Physics , 2012 , 112 ( 12 ): 124504 . [42] Cédric M , Rouger N , Pernot J . Recent progress in deep-depletion diamond metal-oxide-semiconductor field-effect transistors [J]. Journal of Physics D: Applied Physics , 2021 , 54 ( 23 ): 233002 . [43] Gildenblat G S , Grot S A , Hatfield C W , et al . High-temperature thin-film diamond field-effect transistor fabricated using a selective growth method [J]. IEEE Electron Device Letters , 1991 , 12 ( 2 ): 37 - 39 . [44] Makoto A , Hiroshi K . Electric properties of metal/diamond interfaces utilizing hydrogen-terminated surfaces of homoepitaxial diamonds [J]. Japanese Journal of Applied Physics , 1994 , 33 ( 5B ): L708 . [45] Dresselhaus M S , Kalish R , Prins J F . Ion implantation in diamond, graphite and related materials [J]. Physics Today , 1993 , 46 ( 5 ): 65 - 65 . [46] Umezawa H , Saito T , Tokuda N , et al . Leakage current analysis of diamond Schottky barrier diode [J]. Applied Physics Letters , 2007 , 90 ( 7 ): 1670 . [47] Wade M , Muret P , Omnès F , et al . Technology and electrical properties of ohmic contacts and Schottky diodes on homoepitaxial layers grown on (100) diamond surfaces [J]. Diamond & Related Materials , 2006 , 15 ( 4 ): 614 - 617 . [48] Ueda K , Kawamoto K , Asano H . High-temperature and high-voltage characteristics of Cu/diamond Schottky diodes [J]. Diamond & Related Materials , 2015 , 57 : 28 - 31 . [49] Teraji T , Garino Y , Koide Y , et al . Low-leakage p-type diamond Schottky diodes prepared using vacuum ultraviolet light/ozone treatment [J]. Journal of Applied Physics , 2009 , 105 ( 12 ): 3596 . [50] Garino Y , Teraji T , Koizumi S , et al . P-type diamond Schottky diodes fabricated by vacuum ultraviolet light/ozone surface oxidation: comparison with diodes based on wet-chemical oxidation [J]. Physica Status Solidi , 2009 , 206 ( 9 ): 2082 - 2085 . [51] Traore A , Muret P , Fiori A , et al . Zr/oxidized diamond interface for high power Schottky diodes [J]. Applied Physics Letters , 2014 , 104 ( 5 ): 19 . [52] Blank V D , Bormashov V S , Tarelkin S A , et al . Power high-voltage and fast response Schottky barrier diamond diodes [J]. Diamond and Related Materials , 2015 , 57 : 32 - 36 . [53] Liu J W , Liao M Y , Imura M , et al . Electrical characteristics of hydrogen-terminated diamond metal-oxide-semiconductor with atomic layer deposited HfO 2 as gate dielectric [J]. Applied Physics Letters , 2013 , 102 ( 11 ): 1725 . [54] Pham T T , Pernot J , Perez G , et al . Deep-depletion mode boron doped monocrystalline diamond metal oxide semiconductor field effect transistor [J]. IEEE Electron Device Letters , 2017 , 38 ( 11 ): 1571 - 1574 . [55] Liu J W , Oosato H , Liao M Y , Koide Y . Enhancement-mode hydrogenated diamond metal-oxide-semiconductor field-effect transistors with Y 2 O 3 oxide insulator grown by electron beam evaporator [J]. Applied Physics Letters , 2017 , 110 ( 20 ): 203502 . [56] Liu J W , Liao M Y , Imura M , et al . Interfacial band configuration and electrical properties of LaAlO 3 /Al 2 O 3 /hydrogenated-diamond metal-oxide-semiconductor field effect transistors [J]. Journal of Applied Physics , 2013 , 114 ( 8 ): 084108 . [57] Liu J W , Liao M Y , Imura M , et al . Low on-resistance diamond field effect transistor with high-k ZrO 2 as dielectric [J]. Scientific Reports , 2014 , 4 : 6395 . [58] Zhang X , Matsumoto T , Yamasaki S , et al . Inversion-type p-channel diamond MOSFET issues [J]. Springer International Publishing , 2021 , 36 : 4688 - 4702 . [59] Zhang X , Matsumoto T , Sakurai U , et al . Insight into Al 2 O 3 /B-doped diamond interface states with high-temperature conductance method [J]. Applied Physics Letters , 2020 , 117 ( 9 ): 092104 . [60] Sasama Y , Kageura T , Imura M , et al . High-mobility p-channel wide-bandgap transistors based on hydrogen-terminated diamond/hexagonal boron nitride heterostructures [J]. Nature Electronics , 2022 , 5 ( 1 ): 37 - 44 . [61] Ueda K , Kasu M , Yamauchi Y , et al . Diamond FET using high-quality polycrystalline diamond with f T of 45 GHz and f max of 120 GHz [J]. IEEE Electron Device Letters , 2006 , 27 ( 7 ): 570 - 572 . [62] Russell S , Sharabi S , Tallaire A , et al . RF operation of hydrogen-terminated diamond field effect transistors: a comparative study [J]. IEEE Transactions on Electron Devices , 2015 , 62 ( 3 ): 751 - 756 . [63] Yu C , Zhou C J , Guo J C , et al . RF performance of hydrogenated single crystal diamond MOSFETs [C]. 2019 IEEE International Conference on Electron Devices and Solid-state Circuits (EDSSC) . Xi'an : IEEE , 2019 : 1 - 3 . [64] Yu C , He Z , Zhou C J , et al . High frequency hydrogen-terminated diamond MESFET with an f max of 103 GHz [J]. Materials Today Communications , 2021 , 28 ( 12 ): 102489 . [65] Yu X X , Hu W X , Zhou J J , et al . 1 W/mm output power density for H-terminated diamond MOSFETs with Al 2 O 3 /SiO 2 bi-layer passivation at 2 GHz [J]. IEEE Journal of the Electron Devices Society , 2020 , 9 : 160 - 164 . [66] Qiao B , Dai P F , Yu X X , et al . 2.1 W/mm output power density at 10 GHz for H-terminated diamond MOSFETs with 111-oriented surface [J]. IEEE Journal of the Electron Devices Society , 2023 , 12 : 51 - 55 . [67] Kawarada H , Yamada T , Xu D , et al . Diamond MOSFETs using 2D hole gas with 1 700 V breakdown voltage [C]. 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Prague, Czech Republic : IEEE , 2016 : 483 - 486 . [68] Kitabayashi Y , Kudo T , Tsuboi H , et al . Normally-off C―H diamond MOSFETs with partial C―O channel achieving 2-kV breakdown voltage [J]. IEEE Electron Device Letters , 2017 , 38 ( 3 ): 363 - 366 . [69] Novoselov K S , Geim A K , Morozov S V , et al . Electric field effect in atomically thin carbon films [J]. Science , 2004 , 306 ( 5696 ): 666 - 669 . [70] Mayorov A S , Gorbachev R V , Morozov S V , et al . Micrometer-scale ballistic transport in encapsulated graphene at room temperature [J]. Nano Letters , 2011 , 11 ( 6 ): 2396 - 2399 . [71] Balandin A A , Ghosh S , Bao W , et al . Superior thermal conductivity of single-layer graphene [J]. Nano Letters , 2008 , 8 ( 3 ): 902 . [72] Gao E L , Lin S Z , Qin Z , et al . Mechanical exfoliation of two-dimensional materials [J]. Journal of the Mechanics and Physics of Solids , 2018 , 115 : 248 - 262 . [73] Jayasena B , Reddy C D , Subbiah S . Separation, folding and shearing of graphene layers during wedge-based mechanical exfoliation [J]. Nano-technology , 2013 , 24 ( 20 ): 205301 . [74] Hernández Y , Nicolosi V , Lotya M , et al . High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nature Nanotechnology , 2008 , 3 : 563 - 568 . [75] Michael S . Selling graphene by the ton [J]. Nature Nanotechnology , 2009 , 4 : 612 - 614 . [76] Su C Y , Lu A Y , Xu Y P , et al . High-quality thin graphene films from fast electrochemical exfoliation [J]. ACS Nano , 2011 , 5 ( 3 ): 2332 - 2339 . [77] Shi P C , Guo J P , Liang X , et al . Large-scale production of high-quality graphene sheets by a non-electrified electrochemical exfoliation method [J]. Carbon , 2018 : 507 - 513 . [78] Hong B H . Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature , 2009 , 457 ( 7230 ): 706 - 710 . [79] Young K T , Smith C , Krentz T M , et al . Graphene synthesized by chemical vapor deposition as a hydrogen isotope permeation barrier [J]. Carbon , 2021 , 176 : 106 - 117 . [80] Thanh T D , Balamurugan J , Lee S H , et al . Novel porous gold-palladium nanoalloy network-supported graphene as an advanced catalyst for non-enzymatic hydrogen peroxide sensing [J]. Biosensors & Bioelectronics , 2016 , 815 : 669 - 678 . [81] Seah C M , Chai S P , Mohamed A R . Mechanisms of graphene growth by chemical vapor deposition on transition metals [J]. Carbon , 2014 , 70 : 1 - 21 . [82] Berger C , Song Z M , Li T B , et al . Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J]. The Journal of Physical Chemistry B , 2004 , 108 ( 52 ): 19912 - 19916 . [83] Xu X , Zhang Z , Dong J , et al . Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil [J]. Science Bulletin , 2017 , 62 ( 15 ): 1074 - 1080 . [84] Pham T T , Huynh T H , Do Q H , et al . Optimum reproduction and characterization of graphene on copper foils by low pressure chemical vapor deposition [J]. Materials Chemistry & Physics , 2019 , 224 : 286 - 292 . [85] Shen B , Huang Z , Ji Z , et al . Bilayer graphene film synthesized by hot filament chemical vapor deposition as a nanoscale solid lubricant [J]. Surface and Coatings Technology , 2019 , 380 ( 3 ): 125061 . [86] Cai S , Chen X , Liu P , et al . Fabrication of three-dimensional graphene/Cu-Ag composites by in situ chemical vapor deposition and their properties [J]. Journal of Materials Engineering and Performance , 2020 , 29 ( 6414 ): 2248 - 2255 . [87] Tian M , Hu B , Yang H , et al . Wafer scale mapping and statistical analysis of radio frequency characteristics in highly uniform CVD graphene transistors [J]. Advanced Electronic Materials , 2019 , 5 ( 4 ): 1800711 . [88] Barone V , Hod O , Scuseria G E . Electronic structure and stability of semiconducting graphene nanoribbons [J]. Nano Letters , 2006 , 6 ( 12 ): 2748 - 2754 . [89] Li X L , Wang X R , Zhang L , et al . Chemically derived, ultrasmooth graphene nanoribbon semiconductors [J]. Science , 2008 , 319 ( 5867 ): 1229 - 1232 . [90] Castro E V , Novoselov K S , Morozov S V , et al . Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect [J]. Physical Review Letters , 2007 , 99 ( 21 ): 216802 . [91] Zhang Y B , Tang T T , Girit C , et al . Direct observation of a widely tunable bandgap in bilayer graphene [J]. Nature , 2009 , 459 : 820 - 823 . [92] Zhou S Y , Gweon G H , Fedorov A V , et al . Substrate-induced bandgap opening in epitaxial graphene [J]. Nature Materials , 2007 , 6 : 770 - 775 . [93] Xia F N , Farmer D B , Lin Y M , et al . Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature [J]. Nano Letters , 2010 , 10 ( 2 ): 715 - 718 . [94] Rao C N R , Gopalakrishnan K , Govindaraj A . Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements [J]. Nano Today , 2014 , 9 ( 3 ): 324 - 343 . [95] Panchakarla L S , Subrahmanyam K S , Saha S K , et al . Synthesis, structure and properties of boron- and nitrogen-doped graphene [J]. Advanced Materials , 2009 , 21 ( 46 ): 4726 - 4730 . [96] Mou Z , Chen X , Du Y , et al . Forming mechanism of nitrogen doped graphene prepared by thermal solid-state reaction of graphite oxide and urea [J]. Applied Surface Science , 2011 , 258 ( 5 ): 1704 - 1710 . [97] Gopalakrishnan K , Moses K , Govindaraj A , et al . Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides [J]. Solid State Communications , 2013 , 175-176 : 43 - 50 . [98] Sheng Z H , Gao H L , Bao W J , et al . Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells [J]. Journal of Materials Chemistry , 2012 , 22 ( 2 ): 390 - 395 . [99] Zuo Z , Jiang Z , Manthiram A . Porous B-doped graphene inspired by fried-ice for supercapacitors and metal-free catalysts [J]. Journal of Materials Chemistry A , 2013 , 1 ( 43 ): 13476 - 13483 . [100] Wei D C , Liu Y Q , Wang Y , et al . Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties [J]. Nano Letters , 2009 , 9 ( 5 ): 1752 - 1758 . [101] Cattelan M , Agnoli S , Favaro M , et al . Microscopic view on a chemical vapor deposition route to boron-doped graphene nanostructures [J]. Chemistry of Materials: A Publication of the American Chemistry Society , 2013 , 25 ( 9 ): 1490 - 1495 . [102] Jeong H M , Lee J W , Shin W H , et al . Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes [J]. Nano Letters , 2011 , 11 ( 6 ): 2472 - 2477 . [103] Zhang X , Shao Z , Zhang X , et al . Surface charge transfer doping of low-dimensional nanostructures toward high-performance nanodevices [J]. Advanced Materials , 2016 , 28 ( 47 ): 10409 - 10442 . [104] Chen L , Wang L , Shuai Z , et al . Energy level alignment and charge carrier mobility in noncovalently functionalized graphene [J]. Journal of Physical Chemistry Letters , 2013 , 4 ( 13 ): 2158 - 2165 . [105] Parret R , Paillet M , Huntzinger J R , et al . In situ Raman probing of graphene over a broad doping range upon rubidium vapor exposure [J]. ACS Nano , 2013 , 7 ( 1 ): 165 - 173 . [106] Szafranek B N , Schall D , Otto M , et al . High on/off ratios in bilayer graphene field effect transistors realized by surface dopants [J]. Nano Letters , 2011 , 11 ( 7 ): 2640 - 2643 . [107] Huh S , Park J , Kim K S , et al . Selective n-type doping of graphene by photo-patterned gold nanoparticles [J]. ACS Nano , 2011 , 5 ( 5 ): 3639 - 3644 . [108] Wu Y , Farmer D B , Xia F , et al . Graphene electronics: materials, devices, and circuits [J]. Proceedings of the IEEE , 2013 , 101 ( 7 ): 1620 - 1637 . [109] Meric I , Baklitskaya N , Kim P , et al . RF performance of top-gated, zero-bandgap graphene field-effect transistors [C]. 2008 IEEE International Electron Devices Meeting . San Francisco : IEEE , 2008 : 1 - 4 . [110] Liao L , Lin Y C , Bao M Q , et al . High-speed graphene transistors with a self-aligned nanowire gate [J]. Nature , 2010 , 467 ( 7313 ): 305 - 308 . [111] Wu Y , Jenkins K A , Valdes-Garcia A , et al . State-of-the-art graphene high-frequency electronics [J]. Nano Letters , 2012 , 12 ( 6 ): 3062 - 3067 . [112] Cheng R , Bai J , Liao L , et al . High-frequency self-aligned graphene transistors with transferred gate stacks [J]. Proceedings of the National Academy of Sciences of the United States of America , 2012 , 109 ( 29 ): 11588 - 11592 . [113] 卢琪 , 吕宏鸣 , 伍晓明 , 等 . 石墨烯射频器件研究进展 [J]. 物理学报 , 2017 , 66 ( 21 ): 247 - 259 . [114] Peng P , Tian Z , Li M , et al . Frequency multiplier based on back-gated graphene FETs with M-shaped resistance characteristics [J]. Journal of Applied Physics , 2019 , 125 ( 6 ): 064503 . [115] Cheng C T , Huang B J , Mao X R , et al . A graphene based frequency quadrupler [J]. Scientific Reports , 2017 , 7 : 46605 . [116] Habibpour O , Cherednichenko S , Vukusic J , et al . A subharmonic graphene FET mixer [J]. IEEE Electron Device Letters , 2011 , 33 ( 1 ): 71 - 73 . [117] Habibpour O , Simon He Z X , Strupinski W , et al . A W-band MMIC resistive mixer based on epitaxial graphene FET [J]. IEEE Microwave & Wireless Components Letters , 2017 , 27 ( 2 ): 168 - 170 . [118] Tian M , Li X , Gao Q , et al . Improvement of conversion loss of resistive mixers using bernal-stacked bilayer graphene [J]. IEEE Electron Device Letters , 2019 , 40 ( 2 ): 325 - 328 . [119] Gao Q , Li X , Tian M , et al . Short-channel graphene mixer with high linearity [J]. IEEE Electron Device Letters , 2017 , 38 ( 8 ): 1168 - 1171 . [120] Medina-Rull A , Pasadas F , Marin E G , et al . A graphene field-effect transistor based analogue phase shifter for high-frequency applications [J]. IEEE Access , 2021 , 8 : 209055 - 209063 . [121] Li J Q , Mao X R , Gu X W , et al . Phase shift induced by gate-controlled quantum capacitance in graphene FET [J]. IEEE Electron Device Letters , 2021 , 42 ( 4 ): 601 - 604 . [122] Wang H , Nezich D , Kong J , et al . Graphene frequency multipliers [J]. IEEE Electron Device Letters , 2009 , 30 ( 5 ): 547 - 549 . [123] Liang Y R , Liang X L , Zhang Z Y , et al . High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits [J]. Nanoscale , 2015 , 7 ( 25 ): 10954 - 10962 . [124] Wang H , Hsu A , Wu J , et al . Graphene-based ambipolar RF mixers [J]. IEEE Electron Device Letters , 2010 , 31 ( 9 ): 906 - 908 . [125] Andersson M A , Zhang Y , Stake J . A 185-215-GHz subharmonic resistive graphene FET integrated mixer on silicon [J]. IEEE Transactions on Microwave Theory and Techniques , 2016 , 65 ( 1 ): 165 - 172 . [126] Wu Y , Zou X M , Sun M L , et al . 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors [J]. ACS Applied Materials & Interfaces , 2016 , 8 ( 39 ): 25645 - 25649 . [127] Iijama S . Helical microtubules of graphitic carbon [J]. Nature , 1991 , 354 ( 6348 ): 56 - 58 . [128] Koswatta S O , Valdes-Garcia A , Steiner M B , et al . Ultimate RF performance potential of carbon electronics [J]. IEEE Transactions on Microwave Theory & Techniques , 2011 , 59 ( 10 ): 2739 - 2750 . [129] Zhang P P , Qiu C G , Zhang Z Y , et al . Performance projections for ballistic carbon nanotube FinFET at circuit level [J]. Nano Research , 2016 , 9 : 1785 - 1794 . [130] Cardenas J A , Andrews J B , Noyce S G , et al . Carbon nanotube electronics for IoT sensors [J]. Nano Futures , 2019 , 4 ( 1 ): 012001 . [131] Avouris P , Chen J . Nanotube electronics and optoelectronics [J]. Materials Today , 2006 , 9 ( 10 ): 46 - 54 . [132] Burghard M , Klauk H , Kern K . Carbon-based field-effect transistors for nanoelectronics [J]. Advanced Materials , 2010 , 21 ( 25-26 ): 2586 - 2600 . [133] Rutherglen C , Jain D , Burke P . Nanotube electronics for radiofrequency applications [J]. Nature Nanotechnology , 2009 , 4 ( 12 ): 811 - 819 . [134] Sinitskii A , Fursina A A , Kosynkin D V , et al . Electronic transport in monolayer graphene nanoribbons produced by chemical unzipping of carbon nanotubes [J]. Applied Physics Letters , 2009 , 95 ( 25 ): 253108 . [135] Tang D M , Erohin S V , Kvashnin D G , et al . Semiconductor nanochannels in metallic carbon nanotubes by thermomechanical chirality alteration [J]. Science , 2021 , 374 ( 6575 ): 1616 - 1620 . [136] Wang Z , Zhang Z , Zhong H , et al . Carbon nanotube based multifunctional ambipolar transistors for AC applications [J]. Advanced Functional Materials , 2013 , 23 ( 4 ): 446 - 450 . [137] Wang Z , Liang S , Zhang Z , et al . Scalable fabrication of ambipolar transistors and radio-frequency circuits using aligned carbon nanotube arrays [J]. Advanced Materials , 2014 , 26 ( 4 ): 645 - 652 . [138] Lin Y , Cao Y , Ding S , et al . Scaling aligned carbon nanotube transistors to a sub-10 nm node [J]. Nature Electronics , 2023 , 6 ( 7 ): 506 - 515 . [139] Bethoux J M , Happy H , Dambrine G , et al . An 8-GHz f t carbon nanotube field-effect transistor for gigahertz range applications [J]. IEEE Electron Device Letters , 2006 , 27 ( 8 ): 681 - 683 . [140] Louarn A L , Kapche F , Bethoux J M , et al . Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors [J]. Applied Physics Letters , 2007 , 90 ( 23 ): 233108 . [141] Zhang H , Xiang L , Yang Y J , et al . High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil [J]. ACS Nano , 2018 , 12 ( 3 ): 2773 - 2779 . [142] Liang Y , Xiao M , Wu D , et al . Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers [J]. ACS Nano , 2020 , 14 ( 7 ): 8866 - 8874 . [143] Zhu M , Xiao H S , Yan G , et al . Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates [J]. Nature Electronics , 2020 , 3 : 622 - 629 . [144] Fan C W , Cheng X H , Xu L , et al . Monolithic three-dimensional integration of aligned carbon nanotube transistors for high-performance integrated circuits [J]. InfoMat , 2023 , 5 ( 7 ): e12420 . [145] Javey A , Guo J , Wang Q , et al . Ballistic carbon nanotube field-effect transistors [J]. Nature , 2003 , 424 ( 6949 ): 654 - 657 . [146] Zhang Z , Liang X , Wang S , et al . Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits [J]. Nano Letters , 2007 , 7 ( 12 ): 3603 - 3607 . [147] Yang Y , Ding L , Han J , et al . High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films [J]. ACS Nano , 2017 , 11 ( 4 ): 4124 - 4132 . [148] Liu L , Han J , Xu L , et al . Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics [J]. Science , 2020 , 368 ( 6493 ): 850 - 856 . [149] Zhong D , Zhao C , Liu L , et al . Continuous adjustment of threshold voltage in carbon nanotube field-effect transistors through gate engineering [J]. Applied Physics Letters , 2018 , 112 ( 15 ): 153109 . [150] Lin Y X , Cao Y , Ding S J , et al . Scaling aligned carbon nanotube transistors to a sub-10 nm node [J]. Nature Electronics , 2023 , 6 : 506 - 515 . [151] Zhang Z , Wang S , Ding L , et al . Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage [J]. Nano Letters , 2008 , 8 ( 11 ): 3696 - 3701 . [152] Sun R Z , Lai J X , Chen W J , et al . GaN power integration for high frequency and high efficiency power applications: a review [J]. IEEE Access , 2020 , 8 : 15529 - 15542 . [153] Pengelly R S . A review of GaN on SiC high electron-mobility power transistors and MMICs [J]. IEEE Transactions on Microwave Theory & Techniques , 2012 , 60 ( 6 ): 1764 - 1783 . [154] Burke P J . AC performance of nanoelectronics: towards a ballistic THz nanotube transistor [J]. Solid State Electronics , 2004 , 48 ( 10-11 ): 1981 - 1986 . [155] Nougaret L , Happy H , Dambrine G , et al . 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes [J]. Applied Physics Letters , 2009 ; 94 ( 24 ): 243505 [156] Kang S J , Kocabas C , Ozel T , et al . High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes [J]. Nature Nanotechnology , 2007 , 2 ( 4 ): 230 - 236 . [157] Steiner M , Engel M , Lin Y M , et al . High-frequency performance of scaled carbon nanotube array field-effect transistors [J]. Applied Physics Letters , 2012 , 101 ( 5 ): 053123 . [158] Ding L , Wang Z , Pei T , et al . Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering [J]. ACS Nano , 2011 , 5 ( 4 ): 2512 - 2519 . [159] Che Y , Badmaev A , Jooyaie A , et al . Self-aligned T-gate high-purity semiconducting carbon nanotube RF transistors operated in quasi-ballistic transport and quantum capacitance regime [J]. American Chemical Society , 2012 , 6 ( 8 ): 6936 - 6943 . [160] Cao Y , Brady G J , Gui H , et al . Radio frequency transistors using aligned semiconducting carbon nanotubes with current-gain cutoff frequency and maximum oscillation frequency simultaneously greater than 70 GHz [J]. ACS Nano , 2016 , 10 ( 7 ): 6782 - 6790 . [161] Zhong D L , Zhang Z Y , Ding L , et al . Gigahertz integrated circuits based on carbon nanotube films [J]. Nature Electronics , 2018 , 1 : 40 - 45 . [162] Shi H W , Ding L , Zhong D H , et al . Radiofrequency transistors based on aligned carbon nanotube arrays [J]. Nature Electronics , 2021 , 4 : 405 - 415 . [163] Francis D , Kuball M . 14-GaN-on-diamond Materials and Device Technology: A Review [M]. United States : Elsevier Ltd , 2022 : 295 - 331 . [164] Wang Z X , Ding L , Pei T , et al . Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler [J]. Nano Letters , 2010 , 10 ( 9 ): 3648 - 3655 . [165] Zhong D , Shi H , Ding L , et al . Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz [J]. ACS Applied Materials & Interfaces , 2019 , 11 ( 45 ): 42496 - 42503 . [166] Rutherglen C , Kane A A , Marsh P F , et al . Wafer-scalable, aligned carbon nanotube transistors operating at frequencies of over 100 GHz [J]. Nature Electronics , 2019 , 2 ( 11 ): 530 - 539 . [167] Liu Y , Ding S , Li W , et al . Interface states in gate stack of carbon nanotube array transistors [J]. ACS Nano , 2024 , 18 ( 29 ): 19086 - 19098 .